

ADRIAN WONG

(714) 272-5703 | adrianskw@gmail.com | [LinkedIn](#) | [Website](#) | [GitHub](#)

PROFESSIONAL SUMMARY

Research scientist with a PhD in Computational Physics specializing in time-series modeling of noisy, high-dimensional, and nonlinear systems. Expert in Monte Carlo methods, high-performance computing (C/C++), optimization, and model validation. Proven track record in developing predictive frameworks for complex dynamical systems and seeking to apply this expertise to financial markets.

EDUCATION

UNIVERSITY OF CALIFORNIA SAN DIEGO

LA JOLLA, CA

- *Ph.D. Physics, with specialization in Computational Science*
 - **Thesis:** *Predictions of Chaotic Systems with Physical Models and Machine Learning*
- *B.S. Physics*

December 2022

June 2014

SKILLS & CERTIFICATIONS

- **Programming:** Python (numpy and scipy), C/C++, MPI, OpenMP, MATLAB, Mathematica, UNIX/Bash.
- **Quantitative:** Time-Series Analysis, Stochastic Calculus, Data Structures and Algorithms, Numerical Linear Algebra, Information Theory (Probability and Statistics), Bayesian Inference, Monte Carlo, Mathematical Optimization, Recurrent Neural Networks, Kalman Filters.
- **Certifications:** [Upstart-AI in Financial Services](#), [Erdős Institute-Deep Learning](#), [Erdős Institute-Quant Finance](#) (in progress).

PROFESSIONAL EXPERIENCE

AIR FORCE RESEARCH LABORATORY

EDWARDS AFB, CA

Research Scientist (*Applied Mathematics*)

August 2021 - Present

- Developed data-driven predictive models for in-space propulsion devices, enabling real-time state estimation and out-of-sample forecasting of system dynamics where traditional simulations are computationally prohibitive.
- Benchmarked emerging data-driven and neural network methods for stochastic and partially observed systems, establishing trade-offs and baseline performance requirements.
- Collaborated with cross-functional teams to bridge the gap between theoretical modeling and real-world experiments, transitioning in-house data assimilation methods from prototype to deployment in experiments.
- Secured \$500k+ in competitive research funding by pitching novel model development and data assimilation frameworks that integrate data-driven models into physics-based simulations.

UNIVERSITY OF CALIFORNIA SAN DIEGO

LA JOLLA, CA

Graduate Research Assistant (*Abarbanel Research Group*)

September 2017 - December 2022

- Proposed and developed data assimilation methods for complex and chaotic systems, improving state estimation and prediction capabilities in both model-based Bayesian inference and model-free machine learning approaches.
- Deployed Reservoir Computing for time-series forecasting of partially observed systems, optimizing architectural hyperparameters to outperform baseline LSTMs in data-constrained scenarios.
- Developed custom Monte Carlo Markov Chain optimization routines for exploring non-convex loss landscapes, ensuring robust state and parameter estimation while maintaining computational efficiency.

SAN DIEGO SUPERCOMPUTER CENTER

LA JOLLA, CA

Intern ([High Performance Geo-Computing Laboratory](#))

April 2017 - June 2017

- Optimized petaflop-scale code using space-filling curves on finite difference stencils, improving cache efficiency and achieving significant gains in computational throughput.

LAWRENCE LIVERMORE NATIONAL LABORATORY

LIVERMORE, CA

Intern ([Computation and High Energy-Density Physics Divisions](#))

July 2016 - September 2017

- Parallelized production-level Monte Carlo simulations using MPI, reducing runtime and enabling high-density sampling for reduced-variance statistical estimates.
- Designed an iterative convexity-enforcing algorithm for multi-source data fusion to guarantee physical constraints are met, ensuring stability of the simulation pipeline.
- Contributed to open-source mathematical libraries by implementing higher-order finite difference stencils, improving accuracy and reducing numerical dissipation of long-term simulations.

PROJECTS

ERDŐS INSTITUTE QUANT FINANCE PROJECT (IN-PROGRESS)

- Options pricing focus (leaning towards Statistical/Volatility Arbitrage of LNG Markets) February 2025 – Current

ERDŐS INSTITUTE DEEP LEARNING GROUP PROJECT

Credit Card Fraud Detection ([1st Place](#)) [[GitHub](#)]

July 2025 – September 2025

- Built an unsupervised anomaly detection model using autoencoders on large-scale credit card transaction data.
- Achieved higher KPIs – precision (34% vs 20%) and ROC-AUC (0.81 vs 0.77) – than baseline isolation forest and Gaussian Mixture Model, while maintaining modest gains in recall.
- Implemented user identification feature that aggregates user behavior, reducing noise at the transaction level while adding yet another layer of improvement for KPIs.

HIGH-PERFORMANCE COMPUTING CLASS, FINAL PROJECT

Low-Latency AlexNet

April 2017 – June 2017

- Implemented a pre-trained convolutional neural network (AlexNet) inference in C/C++ with a focus on HPC.
- Leveraged OpenMP SIMD vectorization to achieve <20ms inference times on CPU, optimizing for efficient processing.

PUBLICATIONS

1. **Adrian Wong**, Christine Greve, and Daniel Eckhardt. “[Time-resolved data-driven surrogates of hall-effect thrusters](#)”. arXiv preprint arXiv:2408.06499, 2024.
2. **Adrian Wong**, Robert Martin, and Daniel Eckhardt. “[Contraction and synchronization in reservoir systems](#)”. Physical Review E, 2024
3. Robert Martin, Christine Greve, Cesar Huerta, **Adrian Wong**, Justin Koo, and Daniel Eckhardt. “[A robust time-delay selection criterion applied to convergent cross mapping](#)”. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(9), 2024.
4. Cesar Huerta, Christine Greve, and **Adrian Wong**. “[Comparison of causality determination techniques in studying hall-effect thrusters](#)”. Journal of Electric Propulsion, 3(1):23, 2024.
5. Alex Tong Lin, **Adrian Wong**, Robert Martin, Stanley Osher, and Daniel Eckhardt. “[Parameter inference of time series by delay embeddings and learning differentiable operators](#)”. arXiv preprint arXiv:2203.06269, 2022.
6. Jason Platt, **Adrian Wong**, Randall Clark, Stephen Penny, and Henry Abarbanel. “[Robust forecasting using predictive generalized synchronization in reservoir computing](#)”. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021.
7. **Adrian Wong***, Zheng Fang*, Kangbo Hao*, Alexander Ty, and Henry Abarbanel. “[Precision annealing Monte Carlo methods for statistical data assimilation and machine learning](#)”. Physical Review Research, 2(1):013050, 2020.

(*shared first authorship)

PRESENTATIONS

(AFOSR = Air Force Office of Scientific Research, ARO = Army Research Office)

- AFOSR Dynamic Data and Information Processing Program Review (2023-2025)
- AFOSR Dynamical Systems and Control Theory Program Review (2022-2024)
- International Electric Propulsion Conference - **Best Paper Award** (2024)
- Joint AFOSR and ARO Workshop on Data-driven Causal Inference (2024)

INTERESTS

- Cooking, Backpacking, Woodworking, Board Games
- Volunteer: Boy Scouts Adult Leader, Animal Shelter Foster Parent